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The World of Acoustics Before Signal Processing 
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My Current Research is Focused on Nonlinear, 
Non-Gaussian Signal Processing Problems 
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• Mobility Modeling and Estimation for Ad Hoc Networks of 
 Unmanned Ground Vehicles 
 - Estimate position, velocity and acceleration, given only  
  measurements of Received Signal Strength Indicator  
  (RSSI) signals from fixed or mobile base stations 
 - with Prof. Preetha Thulasiraman, NPS 

 
• Illumination Waveform Design for Non-Gaussian Multi-Hypothesis 

 Target Classification in Cognitive Radar 
 - with a student at NPS 

 
• Statistical Feature Selection for Non-Gaussian Target Classes 

 - with a student at NPS 
 
• Clock Synchronization Through Time-Variant Underwater Acoustic 

 Channels 
 - with Prof. Joe Rice, NPS 



Cognitive Radar Thesis Research Team 

Grace Clark Signal Sciences

5

• Grace Clark, Advisor, Grace Clark Signal Sciences, Livermore, CA 
 Former Visiting Research Professor, ECE, NPS 

 
• Ric Romero, Co-Advisor, Assistant Professor, ECE, Naval Postgraduate 

 School Monterey, CA 
 
• Ke Nan Wang, ENS, USN,  Former MSEE Student, 

 Naval Postgraduate School, Monterey, CA 
 Received Eta Kappa Nu (HKN) Best Thesis Award 

Ric Romero

Ke Nan & Grace



Agenda 
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• Problem Definition: 
 - In our previous non- Gaussian Cognitive Radar work, we simulated 
    Non- Gaussian target signals with closed form pdfs 
 - In this work, we extend our capability so we can use measured Non-
    Gaussian target response signal exemplars to generate the desired samples:  
   
Given only measured target responses, we can draw correlated  
samples with BOTH specified Non-Gaussian pdf and specified  

PSD for Cognitive Radar  
 
• Brief Summary of our work in Cognitive Radar for Non-Gaussian 

 distributed targets 
 
• A complex stochastic simulation algorithm that is simple, fast and provides 

 high quality samples with specified pdf and PSD 
 - Example 

 
• Conclusions 
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Brief Summary of Our Work in 

Cognitive Radar for Non-Gaussian 
Target Distributions 
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A Conventional Radar System Illuminates the Target with a  
Broadband Waveform – Excites all Possible Target Modes 
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Several Problems Motivate Us to Improve on Conventional  
Radars ! Cognitive Radar 

• Illumination waveform power       limitations vs. receiver signal-to-noise ratio (SNR) 
 
• Real-world targets have band-limited radar responses – sparse spectra, 

 but we use a broadband pulse to illuminate the target  
  – wasted energy 

• Inadequate detection/classification performance due to low SNR, etc. 
  P(CC) = Probability of Correct Classification 

 
• Current classification theory assumes complex Gaussian-distributed  

 targets - but real-world targets are often non-Gaussian, or  
 arbitrarily-distributed 

 
• New shared-spectrum applications: 

 Sponsors would like to have communications and radar  
 systems that can share the EM spectrum  
  – Not all frequencies are available at a given time 
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Cognitive Signal Processing Systems Learn from  
the Environment and Adapt their Inputs 

A Cognitive Signal Processing system is one that observes 
and learns from the environment; then uses a dynamic 

closed-loop feedback mechanism to adapt the illumination 
waveform so as to provide system performance 

improvements over traditional systems  

Grace Clark Signal Sciences 10

Early Reference: 
Simon Haykin, McMaster University, Hamilton, Ontario, Canada 
“Cognitive Radar, A Way of the Future,” 
IEEE Signal Processing Magazine, February 2006 



PWE(t) is a Weighted Sum of Individual Optimal  
Matched Target Illumination Waveforms 

Grace Clark Signal Sciences 11

• A single matched illumination waveform is estimated by Maximizing the SNR in the receiver: 
 
• The PSD’s of the individual targets are assumed known a priori from calibration experiments 
 
• The optimal illumination waveform             for a single target is an eigen-solution that has the 

 form of a complex exponential function: 
 
 
 

 where          is the covariance obtained from the PSD of the target signal       . 
 
• The overall illumination waveform                is the weighted sum of the individual optimal  

 target waveforms.  The weights      are prior probabilities: 

/2

max /2
ˆ ˆ( ) ( ) ( )

T

gT
x t x R t dλ τ τ τ

−
= −∫

PWEk (t)
Pi
k

Rg(τ ) g(t)

xi
opt (t)

PWEk (t) = Es Pi
k

i=1

M

∑ xi
opt (t) = Probability Weighted Energy

k = Illumination Iteration Index = 0,1,2,…
i =  Target Index = 1, 2,…M
Es = Energy in the Illumination Waveform
Pi
k = Prior probability for target i at illumination iteration k



A Cognitive Radar System Can Illuminate the Target with a  
Waveform Matched to the Target Classes Known “A Priori” 

Grace Clark Signal Sciences

12

Transmi4er Target Receiver

PWEk (t) = Es Pi
k

i=1

M

∑ xi
opt (t) = Probability Weighted Energy

k = Illumination Index = 0,1,2,…
i =  Target Index = 1, 2,…M
Es = Energy in the Illumination Waveform
Pi
k = Bayesian prior used to weight the optimal matched waveform xi

opt (t)

+

vi (t)

yi (t)

Measurement	Noise

Measured	
Waveform

PWEk (t)

x1
opt (t)

x2
opt (t)

xM
opt (t)

Target		
Impulse	
Response
gi (t)

Radar	Receiver		
And	

MAP	Target		
Classifica/on	
Algorithms	

Weighted	
Sum	
Using	
Prior	

Probabili/es	

Es/mate	
M	Op/mal	
Target-	
Matched	

Waveforms	
Offline	
Using	

Calibra/on	
Measurements	

Bayesian	Itera/ve	Prior		
Probability	Update	Algorithm,		
Joint	pdf	Es/ma/on,	Stochas/c	

Simula/on,	etc.	

Pi
k+1 =

pi
k (y1, y1,…, yk )P0

pi
k (y1, y1,…, yk )P0

i=1

M

∑



Illumina(on	
Waveform



Experiment: Specified PSDs Corresponding to the  
Four Target Classes (Hypotheses) 
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PWE-SNR
Wideband

Cognitive Radar Promises Solutions to Several  
Key Problems in Radar Target Classification 
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For a given Illumination Waveform Energy, the 
Cognitive Radar (red) achieves an 

approximately 100% gain in Probability of 
Correct Classification over the Conventional 

Wideband Radar (Blue). 

• Recent research with my NPS student created a 
   new Cognitive Radar Algorithm for Non-Gaussian
   distributed targets.
     - Using 4 Non-Gaussian targets, we showed:

• We exploit the spectral sparsity of the target 
   responses and create matched waveforms
   with band-limited spectra:

- Saves spectral energy
- Good for low-power, low SNR applications
- Good for shared-spectrum applications

• We can deal with Non-Gaussian distributed targets

Cogni/ve	
Radar

Wideband	
Radar

PCC, for 10 Transmissions

Illumination energy



Classification Performance of the NGCCR Algorithm 
for 10 Transmissions 
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Monte Carlo Setup: 
 
• 50 Target  
   Realizations 
 
• 10 Noise 
    Realizations 
 
 
NGCCR Algorithm 
 Setup: 
 
• 40 Target 
     Realizations for 
     the ensemble 
     averaging
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Given Only Measurements, We Need to Simulate Large Ensembles 
of Target Response Signals for Use With Monte Carlo Algorithms 

Grace Clark Signal SciencesGrace Clark Signal Sciences
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We Are Accustomed to Drawing i.i.d. Samples from a  
Specified Distribution with a Given pdf 
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• Markov Chain Monte Carlo (MCMC) Methods 
 • Metropolis-Hastings Sampling 
 • Gibbs Sampling 
 • Rejection Sampling 
 • Slice Sampling 
 • Importance Sampling 
  etc. 

• Sequential Monte Carlo (Particle Filter) Methods     

Autocorrelation of x(t) :

Rxx (τ ) = E x(t)x*(t +τ ){ }= 1
2π

Sxx ( f )
−∞

∞

∫ e j2π fτdω

Power Spectral Density (PSD) of x(t) :

Sxx ( f ) = Rxx
−∞

∞

∫ (τ )e− j2π fτdτ

Shh ( f )

Rhh (τ )

f (h)
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Autocorrelation
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Example: MCMC Sampling Algorithms Draw  
i.i.d. Samples from the Target Distribution You Provide 
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For Non-Gaussian Cognitive Radar, We Need  
to Draw Non-Gaussian Correlated Samples 
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For the Cognitive Radar Problem, we need to draw correlated samples 
from a specified pdf (Probability Density Function) and specified 

Power Spectral Density (PSD)  



The pdf and PSD of a Stochastic Process  
Cannot be Specified Independently 
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The pdf  f (x) and the PSD  Sxx (k) are linked 
through the signal mean x  and signal variance σ x

2

f (x)
Rayleigh

Sxx ( f )

x(n)

Sxx (0) = N x( )2 T

          = N σ x
2 −E x2{ }⎡

⎣
⎤
⎦

E x{ }= x = f (x)dx
−∞

∞

∫

σ x
2 = E x − x( )2{ }= E x2{ }− x 2

⇒    x 2 =σ x
2 −E x2{ }

21



We know that the variance can 
be written:

σ x
2 = E x − x( )2{ }= E x2{ }− x 2

⇒    x 2 =σ x
2 −E x2{ }

We see that:

Sxx (0) = N σ x
2 −E x2{ }⎡

⎣
⎤
⎦

Proof that the pdf and PSD of a Stochastic  
Process Cannot be Specified Independently 
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We can show that the pdf  f (x) and the PSD  Sxx (k) 
are linked through the signal mean x  and signal variance σ x

2

Rxx (m) = T x(nT )x (n+m)T[ ]
n=0

N−1

∑

Sxx (k)  = Rxx
m=0

N−1

∑ (mT )e
−
j2π
N

km

           = T x(nT )x (n+m)T[ ]
n=0

N−1

∑
⎧
⎨
⎩

⎫
⎬
⎭m=0

N−1

∑ e
−
j2π
N

km

Sxx (0) = x(nT )
m=0

N−1

∑
⎧
⎨
⎩

⎫
⎬
⎭

 T (n+m)T[ ]
n=0

N−1

∑
⎧
⎨
⎩

⎫
⎬
⎭

 

          =      Nx         •         Tx

Sxx (0) = N x( )2 T
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Literature Survey: The General Approach Uses a Zero 
Memory Nonlinearity (ZMNL) 

23 
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Brief Literature Survey: Generating Correlated Samples 
with Desired pdf and Desired PSD 
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• Inverse CDF Methods can provide a Zero Memory Nonlinearity (ZMNL)   
     -  Use a linear filter to obtain y(n) and to assign the desired spectral properties 
     - The ZMNL function g(.) is given by:   

x(n) = g[y(n)]= Ft
−1 Fy

G[y(n)]{ }
    Ft (⋅) =Desired Target CDF
    Fy

G[y(n)]=Gaussian Proposal CDF
g(⋅) is expanded in terms of Hermite polynomials, so the autocorrelation of  

the ZMNL output can be written as a power series of the autocorrelation 
of y(n). 

-  Solve for the autocorrelation associated with y(n) which makes the ZMNL 
     output best approximate the autocorrelation associated with y(n) 
 
-  The main problem is that         is often not invertible analytically, and 

Finding            numerically is detrimental to the simplicity and  
accuracy of the method  

 - 

F(⋅)
F−1(⋅)

• The Problem: 
     Given i.i.d. Gaussian sequence sequence z(n), desired target pdf/CDF, and desired PSD  
     Generate sequence x(n) with desired pdf and PSD 



New Iterative Algorithm by Nichols et Al. 
Good for Generating Real Correlated Samples  
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For a Real-World Application with a Non-Gaussian pdf, 
The Overall Sampling Process Involves Several Steps 
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Close-Up Block Diagram (See Yellow): 
Simulate Correlated Complex Measurements 
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Close-Up Block Diagram for: 
Simulating Correlated Complex Signal Measurements 
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For a Real-World Application with a Non-Gaussian pdf, 
The Overall Sampling Process Involves Several Steps 
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Close-Up Block Diagram for: 
The MCMC Sampling Step to Generate i.i.d. Samples 
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For a Real-World Application with a Non-Gaussian pdf, 
The Overall Sampling Process Involves Several Steps 
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Close-Up Block Diagram for: 
Correlated Sampling Algorithm 
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Conclusions 
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• Earlier, we used target responses with simulated closed-form pdfs for proof of 
   principle of our non-Gaussian Cognitive Radar algorithms 
 
• The pdf and the PSD cannot be specified independently, because 
   they are linked through the signal mean and variance 
 
• New Capability for Using Real-World Signals in Cognitive Radar: 
      Given only measured complex non-Gaussian target responses, we  
      can now simulate large ensembles of these target responses that have 
      specified pdfs and specified band-limited PSDs 
 
       - Combined the simple and efficient Nichols algorithm with MCMC sampling 
       - “Extended” the algorithm for use with complex signals  

Future Work: 
• Work with realistic simulated target impulse responses 
• Work with real-world target impulse responses 
• Strategies to reduce computational complexity 



The World of Acoustics Before Signal Processing 
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In Cognitive Radar, Illumination Waveform Design Exploits 
the Sparsity of the Bandlimited Target Spectra 
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Power Spectral Density (PSD) Power Spectral Density (PSD)

Toy Example: 
Four complex targets, each with a  
different PSD

The matched illumination waveform  
focuses the spectral energy where the  

target spectra reside
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Illumination Waveform Design Assumes that the 
Radar Can Transmit “Arbitrary Waveforms” 
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• Generally, radar systems are built to transmit broadband waveforms 
 
• “Arbitrary Waveform Generators (AWG’s)” are available commercially 
 

 - Given a digital file containing the desired illumination waveform, the  
  AWG, the radar system and antenna convert the digital file to an analog EM 
  field used to illuminate the target(s) 

 
 - For the approach defined here, the desired illumination 
  waveform PWE(t) is computed as described in the  figures and 
  stored in a digital file: 

PWEk (t) = Es Pi
k

i=1

M

∑ xi
opt (t) = Probability Weighted Energy

k = Illumination Iteration Index = 0,1,2,…
i =  Target Index = 1, 2,…M
Es = Energy in the Illumination Waveform
Pi
k = Prior probability for target i at illumination iteration k



PWE(t) is a Weighted Sum of Individual Optimal  
Matched Target Illumination Waveforms 
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• A single matched illumination waveform is estimated by Maximizing the SNR in the receiver: 
 
• The PSD’s of the individual targets are assumed known a priori from calibration experiments 
 
• The optimal illumination waveform             for a single target is an eigen-solution that has the 

 form of a complex exponential function: 
 
 
 

 where          is the covariance obtained from the PSD of the target signal       . 
 
• The overall illumination waveform                is the weighted sum of the individual optimal  

 target waveforms.  The weights      are prior probabilities: 

/2

max /2
ˆ ˆ( ) ( ) ( )

T

gT
x t x R t dλ τ τ τ

−
= −∫

PWEk (t)
Pi
k

Rg(τ ) g(t)

xi
opt (t)

PWEk (t) = Es Pi
k

i=1

M

∑ xi
opt (t) = Probability Weighted Energy

k = Illumination Iteration Index = 0,1,2,…
i =  Target Index = 1, 2,…M
Es = Energy in the Illumination Waveform
Pi
k = Prior probability for target i at illumination iteration k



Pseudo-Code Block Diagram of One Radar Classification 
Evolution 
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An Example of the Monte Carlo Simulation Experiments 
Used to Evaluate Classification Performance 

Grace Clark Signal Sciences 40

!



Experiment: Probability Density Functions (pdf’s)  
Specified for the Four Target Classes (Hypotheses) 
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Classification Performance of the NGCCR Algorithm 
for 10 Transmissions 
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